Asian Clam Survey Owasco Lake July 27, 2016

Thanks to:

- Ed Wagner, diver and driver
- Drew Snell, Owasco Lake Watershed Specialist
- Tim Schneider, Kathryn Velone and Kerry McElroy, Owasco Lake Watershed Inspectors
- Bruce Natale, Michele Wunderlich and Gary Duckett, WQMA
- Boat provided by Dave Wasileski at Owasco Marine
- Partially funded by FLLOWPA

Asian Clams

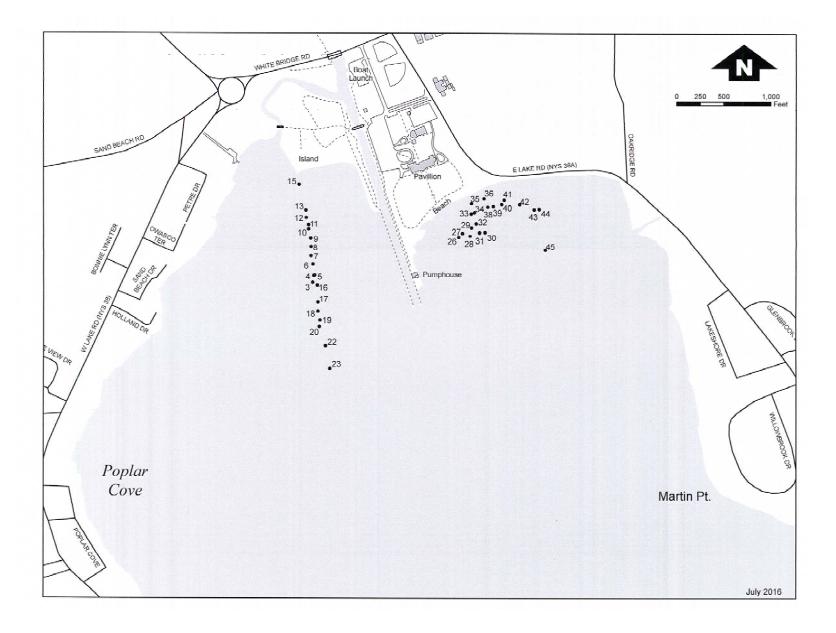
- From Eastern and Southern Asia
- Filter feeders
- Prefer sandy sediments
- Found in Owasco Lake off of the Emerson Park beaches in September 2010
- Also in Otisco, Seneca, Keuka and Canandaigua Lakes as well as Lake George

Asian Clams

- Can self fertilize.
- Single adult can produce 1,000 to 100,000 juveniles per year.
- Juveniles can disperse using a mucus balloon or attach to objects with a byssal thread.
- Settle to the bottom when 0.25 mm in size.
- First year growth rates after initial spawn through the summer to early fall of about 4mm a month.
- Asian clams can reach 10-30 mm in size during their first year depending on food availability and temperatures.
- In Lake George clams were not identified as reproductive until they reached a minimum size of 12.7mm.
- Timing of reproduction in Lake George is mid June through mid October.

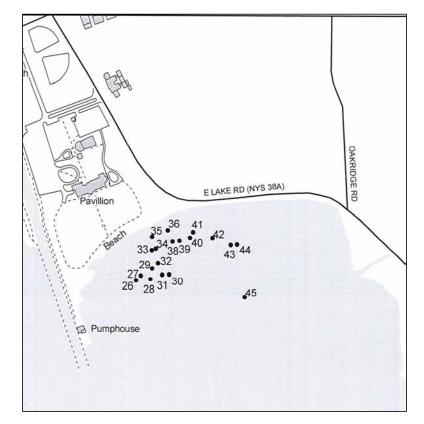
Asian Clams Effects

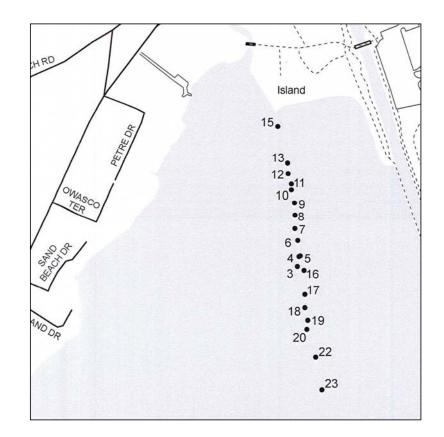
- Displace native bivalves and compete with native mussels for food.
- Excrete elevated levels of nitrogen and phosphorus in the lake-sediment interface, leading to green algae blooms and dissolved oxygen depletion.
- Dieoffs can cause oxygen depletion and algal blooms.
- Change water chemistry allowing species requiring more calcium like zebra and quagga mussels to survive.



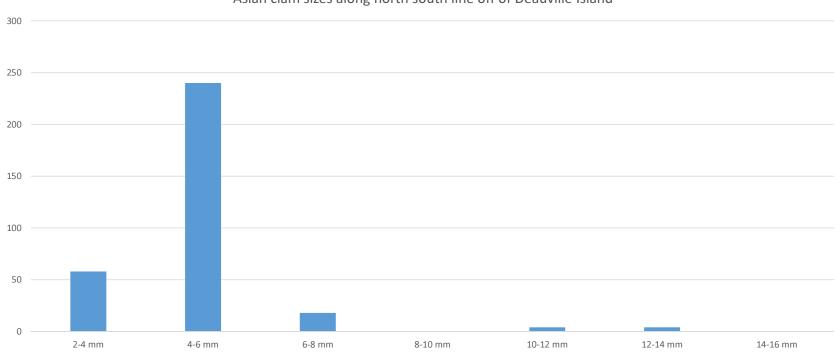
• Can clog pipes.

Asian Clams Control


- Lake George researchers have observed that winter ice contact with sediments killed Asian Clams.
- Lowest lake level during a cold snap: Owasco Lake was at 709.88 feet (above sea level) with low temperatures of -23 degrees F on February 14, 2016.


East Side off of Pavilion Beach, 2016

- Sample sites 32-36 had no clams
- 100% of the clams were less than 10 mm. In 2015, 83% were less than 10 mm. In 2014, over 50% were larger than 10 mm.
- No clams were larger than 10 mm. 40% were larger than 16 mm in 2014.
- No clams found of reproductive age.
- Seems like adults did not survive the 2015-2016 winter, or in an unknown sandy area.

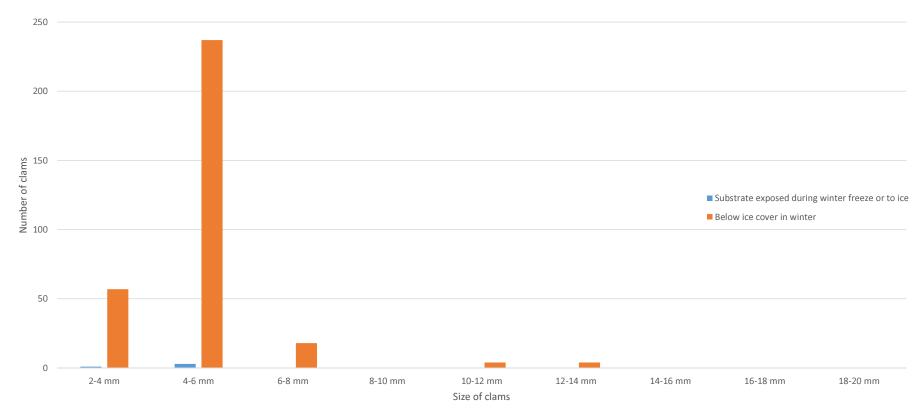


West Side off of Deauville Island

- Transect to shore.
- 97.5% were smaller than 10 mm. Similar to 2014 and 2015. Largest clams found in same area (sample sites 7, 8 and 11) that had some algae and weeds.
- 1% were of reproductive size.
- One sample had 96 clams in a bare sand area and most were 4-6 mm. All samples in 2015 had less than 6 clams.
- Poor survival of adults.

West Side off of Deauville Island, 2016

Asian clam sizes along north south line off of Deauville Island


Size Frequency Plot of All Asian Clams

Size Frequency Plot of All Asian Clams surveyed 2011-2016

Asian Clams, Size Vs Water Depth, 2016

Asian clam in North South Transect

Quantitative Samples

- 2011: 1018 clams per m²
- 2012: 429 clams per m²
- 2013: 1,462 clams per m²
- 2014: 1,018 clams per m²
- 2015: 511 clams per m²
- 2016: 2,632 clams per m²
- Lake George: up to 6,000 per m²

Observations

- The clams on the both sides are mostly young of the year.
- Only the west side had clams that were of reproductive size.
- It appears young of the year clams are transported into the shallow areas by wind and wave action since there are no mature clams there to reproduce.
- Highest density of clams and young clams ever seen in Owasco Lake.
- Some occasionally denser population areas but less dense than Lake George.
- Drawdown appears to cause 100% mortality of clams in areas where the substrate was exposed during the winter.

Darrin Freshwater Institute Research

- Hypothesis: *Chaetogaster limnaei* adversely affect the Asian clam population with respect to size distribution and relative abundance.
 - Have been observed eating the offspring of Asian clams inside adult clams
 - May alter the population structure of Asian clams
 - Will infect Asian clam within a short time period in a scale experiment
 - Can transfer from one clam to another in a small scale lab experiment
- County Planning staff took clam samples last year and sent them to Darrin Freshwater Institute for research and DNA analysis. None of the parasites were found in Owasco Lake samples.
- Trying to find someone who would be willing to look this year.

